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1. Introduction

For the last decade, it has been an intensive effort to incorporate gravity for solving the

particle physics problems. Particularly, in higher dimensional models with branes where

the Standard Model (SM) particles are confined [1], the mass scale hierarchies in the SM

can be understood from geometric factors in extra dimensions. Moreover, for the minimal

supersymmetric extension of the SM (MSSM), the SUSY flavor problem can be ameliorated

by a geometrical separation of the hidden sector from the visible sector in extra dimensions,

the so called sequestering mechanism [2, 3]. In this case, the anomaly mediation [2, 4] can be

a dominant contribution1 to the soft mass parameters in the MSSM. The supersymmetric

embedding of the brane action in the 5D warped supergravity was studied in [8] and the

extension of the analysis to the 6D flat supergravity has been done in [6].

Recently there has been a renewed interest into the 6D Salam-Sezgin supergravity [9],

due to the findings of the new warped solutions [10 – 14]. The warped background has

the extra dimensions “spontaneously” compactified by U(1)R flux on the warped product

1The Kähler potential is not of a sequestered form in higher than five dimensions [5, 6] but some global

symmetry that is not broken by the messenger sector can keep the sequestering [7].
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of the 4D Minkowski space and a deformed sphere (or general two-dimensional compact

Riemann surfaces). Moreover, the branes with nonzero tensions are accommodated at the

conical singularities, without the need of cutting and pasting the extra dimension as in

the 5D case. Since the 4D Minkowski space is present as a unique regular solution with

maximal symmetry [10], the warped solution has a feature of self-tuning of the cosmological

constant [15]2 (for a review, see [18]). There have been a lot of follow-up works on this

model (as well as its non-SUSY analogue [19]), such as the perturbation analysis [20 – 22],

the gravitino spectrum [23], cosmological de-Sitter or scaling solutions [24],3 regularisation

of the conical singularities [26, 27], cosmology on a regularised brane [28, 29], modulus

stabilisation [30], the Casimir effect [31], the effective 4D theory using the gradient expan-

sion [32], exact wave solutions [33], etc. In the literature, however, the branes are regarded

as breaking SUSY explicitly at the scale of brane tensions.

In this paper, we consider the supersymmetrisation of the brane tension action in a way

compatible with the bulk SUSY in 6D Salam-Sezgin supergravity. We find that a brane-

localised Fayet-Ilioupolos (FI) term4 proportional to each brane tension must be introduced

to cancel the SUSY variation of the brane tension term. With a nonzero FI term, we should

also add in the action the brane-localised bilinear fermion terms that couple to the U(1)R
field strength. Furthermore, we should modify the SUSY transformation of the U(1)R
gaugino with a singular term. The Z2 orbifold boundary conditions on the branes are also

required to project out half of the bulk SUSY.

Consequently, solving the modified equations of motion with singular FI terms, we

find that the axisymmetric warped solution of the non-SUSY brane action is maintained,

because the localised FI term is cancelled by a singular piece of the U(1)R field strength.

However, the Wilson line phase of the gauge potential is now fixed to be nonzero at the

brane position due to the extra singular term in the gauge field equation. From the SUSY

variations of the spinors, we show that the only supersymmetric solution with branes is

the unwarped ”football”-shaped compactification. Furthermore, we find that the FI terms

can affect the number of zero modes of gravitino and we expect that the same is true for

any U(1)R charged bulk field.

By analysing the equation for the 4D component gravitino, we show that even after the

Z2 projection around the branes, there are generically multiple normalizable zero modes

of the gravitino. In particular, for the ”football” solutions, there are multiple chiral zero

modes only from the left-handed gravitino: the one with zero winding number and pairs of

chiral zero modes with nonzero winding numbers (m,−m). The mass terms for them would

be forbidden unless the two U(1) gauge symmetries in the system, the U(1)Q isometry of

the axisymmetric extra dimensions and the U(1)R symmetry, are broken. In this ”football”

case, we propose that it is possible to have only one chiral zero mode of the 4D gravitino

left (with zero winding number), if a linear combination of the U(1) symmetries remains

2See, however, refs. [16, 17].
3See ref. [25] for old cosmological solutions without the presence of branes.
4An arbitrary brane-localised FI term was considered to see the effect on the quantization condition in

refs. [11, 17]. In 6D global SUSY, the effect of the FI term on the localisation and the Kaluza-Klein(KK)

mass spectrum of bulk fields was discussed in ref. [34].
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unbroken at low energies. The survival of only one chiral gravitino would be what one

should expect from 4D unbroken N = 1 supergravity.

The paper is organized as follows. First we present the bulk action of the 6D Salam-

Sezgin supergravity to fix the notations. Then we consider the supersymmetrisation of the

brane tension action and derive the required supersymmetric brane-bulk couplings. We go

on to discuss the modified solutions with the localized FI terms, identify the supersymmetric

football-shaped solution and study the effect on the zero modes of gravitino. Finally, the

conclusions are drawn.

2. Six-dimensional Salam-Sezgin supergravity

The six-dimensional Salam-Sezgin supergravity [9] consists of gravity coupled to a dilaton

field φ, a U(1)R gauge field AM and a Kalb-Ramond field BMN, along with the necessary

SUSY fermionic fields, the gravitino ψM , the dilatino χ and the gaugino λ where all spinors

are 6D Weyl. The U(1)R gauge field corresponds to the gauging of the R-symmetry of six-

dimensional supergravity. The complete bulk Langrangian up to four fermion terms is

given by

e−1
6 Lbulk = R − 1

4
(∂Mφ)2 − 1

12
eφGMNPGMNP − 1

4
e

1

2
φFMNFMN − 8g2e−

1

2
φ

+ψ̄MΓMNPDNψP + χ̄ΓMDMχ + λ̄ΓMDMλ

+
1

4
(∂Mφ)

(

ψ̄NΓMΓNχ + χ̄ΓNΓMψN

)

+
1

24
e

1

2
φGMNP

(

ψ̄RΓ[RΓMNPΓS]ψ
S + ψ̄RΓMNPΓRχ

−χ̄ΓRΓMNPψR − χ̄ΓMNPχ + λ̄ΓMNPλ
)

− 1

4
√

2
e

1

4
φFMN

(

ψ̄QΓMNΓQλ + λ̄ΓQΓMNψQ + χ̄ΓMNλ − λ̄ΓMNχ
)

+i
√

2ge−
1

4
φ

(

ψ̄MΓMλ + λ̄ΓMψM − χ̄λ + λ̄χ
)

. (2.1)

The field strengths of the gauge and the Kalb-Ramond fields are defined as

FMN = ∂MAN − ∂NAN , (2.2)

GMNP = 3∂[MBNP ] +
3

2
F[MNAP ], (2.3)

and satisfy the Bianchi identities

∂[QFMN ] = 0, (2.4)

∂[QGMNP ] =
3

2
FQMFNP. (2.5)

For δAM = ∂MΛ under the U(1)R, the Kalb-Ramond field BMN transforms as

δBMN = −ΛFMN. (2.6)
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All the spinors have the same charge normalized to +1 under U(1)R, so the covariant

derivative of the gravitino, for instance, is given by

DMψN =

(

∂M +
1

4
ωMABΓAB − igAM

)

ψN . (2.7)

The action for this Lagrangian is invariant under the following local N = 2 SUSY trans-

formations (up to the trilinear fermion terms):

δeA
M =

1

4

(

−ε̄ΓAψM + ψ̄MΓAε
)

, (2.8)

δφ =
1

2
(ε̄χ + χ̄ε), (2.9)

δBMN = A[MδAN ] +
1

4
e−

1

2
φ
(

ε̄ΓMψN − ψ̄NΓMε − ε̄ΓNψM + ψ̄MΓNε

+ε̄ΓMNχ − χ̄ΓMNε
)

, (2.10)

δχ = −1

4
(∂Mφ)ΓMε +

1

24
e

1

2
φGMNPΓMNPε, (2.11)

δψM = DMε +
1

48
e

1

2
φGPQRΓPQRΓMε, (2.12)

δAM =
1

2
√

2
e−

1

4
φ(ε̄ΓMλ − λ̄ΓMε), (2.13)

δλ =
1

4
√

2
e

1

4
φFMNΓMNε − i

√
2g e−

1

4
φε. (2.14)

The above spinors are chiral with handednesses

Γ7ψM = +ψM , Γ7χ = −χ, Γ7λ1 = +λ1, Γ7ε = +ε. (2.15)

Taking into account that Γ7 = σ3 ⊗1 (see appendix A), the 6D (8-component) spinors can

be decomposed to 6D Weyl (4-component) spinors as

ψM = (ψ̃M , 0)T , χ = (0, χ̃)T , λ = (λ̃, 0)T , ε = (ε̃, 0)T . (2.16)

For later use, we decompose the 6D Weyl spinor ψ̃ to ψ̃ = (ψ̃L, ψ̃R)T , satisfying

γ5(ψ̃L, 0)T = +(ψ̃L, 0)T and γ5(0, ψ̃R)T = −(0, ψ̃R)T .

3. Supersymmetrising the brane tension action

In this section, we will add in the previous action codimension-two branes with nonzero ten-

sion. With this addition, the total action is no longer invariant under the transformations

(2.8)-(2.14). We will, thus, modify our action and SUSY transformations, so that the brane-

bulk system is rendered supersymmetric. With the modification that we propose, we show

that the bulk action remains supersymmetric while the brane action preserves N = 1 SUSY.

3.1 Requirements for the supersymmetric brane action

Let us add to the bulk Lagrangian a term for a brane located at the position y = yi, where

y is the internal space 2D coordinate. This brane Lagrangian will be given by

Lbrane = −e4Tiδ
(2)(y − yi), (3.1)
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where Ti is the brane tension and the 2D delta function is defined as
∫

d2yδ(2)(y− yi) = 1.

The SUSY transformation of the brane action is non-vanishing as follows,

δLbrane = −e4
1

4
Tiδ

(2)(y − yi)(ψ̄µΓµε + h.c.). (3.2)

On the other hand, because the gravitino is charged under U(1)R, varying the gravitino

kinetic term under (2.12), it contains a piece of the gauge field strength as

δLgravitino ⊃ e6ψ̄MΓMNPDNDP ε

= − i

2
e6gψ̄MΓMNPεFNP + · · · . (3.3)

We can utilise the above term of the gravitino vatiation to cancel the brane tension term

as following. The U(1)R field can have in principle FI localised terms [11, 17] parameterized

by constants ξi. We can then define a hatted field strength F̂MN

F̂µν = Fµν , F̂µm = Fµm, (3.4)

F̂mn = Fmn − ǫmnξi
δ(2)(y − yi)

e2
, (3.5)

where ǫmn is the 2D volume form, and rewrite the variation of the gravitino kinetic term

as

δLgravitino ⊃ − i

2
e6gψ̄MΓMNPεF̂NP

+e4gξiδ
(2)(y − yi)ψ̄µΓµγ5ε + · · · , (3.6)

where use is made of Γmnǫmn = 2Γ56 = 2iσ3 ⊗ γ5, the 6D chirality condition, σ3 ⊗ 1ε = ε,

and e6

e2
= e4. Then, the first term cancels the variation of the bulk fermion bilinear term, if

the FMN in the fermion bilinear term is replaced with F̂MN. Most importantly, the second

term has the right form to cancel the variation of the brane tension term. The condition

for this to happen is that,

(

γ5 −
Ti

4gξi

)

ε(yi) = 0. (3.7)

In other words, decomposing the SUSY variation spinor as ε = (ε̃, 0)T with ε̃ = (ε̃L, ε̃R)T ,

the following should be satisfied,

(

1 − Ti

4gξi

)

ε̃L(yi) = 0, (3.8)

(

1 +
Ti

4gξi

)

ε̃R(yi) = 0. (3.9)

Thus, fixing the FI terms with the brane tensions as ξi = Ti

4g
or −Ti

4g
, one needs to

impose that either ε̃R or ε̃L vanish on the brane. Therefore, only N = 1 SUSY can be

preserved on the brane. For other values of ξi, both ε̃L and ε̃R must vanish at the brane, so

there would be no SUSY left. Furthermore, when FMN is replaced by F̂MN in both the bulk

– 5 –
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action and the SUSY transformations, keeping the form of terms containing GMNP and AM

to be the same5 as in the case with no branes, the modified bulk action is supersymmetric

up to four fermion terms.

From now on, we choose ξi = Ti

4g
for all branes6 present in the internal space, so

that there is N = 1 SUSY remaining in the brane action with a SUSY parameter ε̃L non

vanishing on the branes. This choice is made to agree with the no-brane Salam-Sezgin

vacuum [9] where a constant ε̃L is a Killing spinor.

3.2 Orbifold boundary conditions

Once an FI term has been chosen to make the brane tension action invariant under the

SUSY transformations, one has in addition to impose that ε̃R vanishes at the brane position

to preserve N = 1 SUSY on the brane. This can be easily accomplished if we assume an

orbifold Z2 symmetry around the brane.

If the local complex coordinate around the brane is z (in locally polar coordinates

z = reiθ), then the Z2 symmetry corresponds to

z ↔ −z (or θ ↔ θ + π). (3.10)

The same Z2 was also introduced in [21] to avoid the possible instability of a negative

tension brane. We should then assign Z2 parities to all bulk fields and, of course, the

SUSY variation parameters ε̃L and ε̃R. A consistent choice of parities for the fields and

the SUSY variation parameter is

even : ψ̃αL, ψ̃aR, λ̃L, χ̃R, ε̃L, Aα, Bαβ , Bab, φ, (3.11)

odd : ψ̃αR, ψ̃aL, λ̃R, χ̃L, ε̃R, Aa, Bαa. (3.12)

where the gauge field, the Kalb-Ramond field and the gravitino have been written with

locally flat indices, e.g., AA = e M
A AM , so that the parity assignments do not depend on

the coordinate system. It is obvious that the above choice of parities forces ε̃R to vanish

on the brane position.

In the case with two branes system, the warped vacua of [10] have an axially symmetric

internal space. The above Z2 symmetry about both branes present, is just a discrete

subgroup of the axial symmetry. On the other hand, for the general warped solutions with

multiple branes [13], we require the holomorphic function V (z) in the metric to satisfy the

condition |V (−z + zi)| = |V (z − zi)|, where zi is the i-th brane position.

3.3 The supersymmetric brane-bulk coupling

As a consequence of introducing the localised FI terms, we have seen that the brane tension

action is made compatible with the bulk SUSY transformations. The supersymmetric

5We note, however, that the solutions for the gauge field and the Kalb-Ramond field can be changed

due to the singular FI term compared to the case with no branes, as will be shown later.
6When there are different FI terms on the branes, there is no SUSY left, which corresponds to an explicit

SUSY breaking by orbifolding.
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action of the brane-bulk system up to four fermion terms is

e−1
6 LSUSY = R − 1

4
(∂Mφ)2 − 1

12
eφGMNPGMNP − 1

4
e

1

2
φF̂MNF̂MN − 8g2e−

1

2
φ

+ψ̄MΓMNPDNψP + χ̄ΓMDMχ + λ̄ΓMDMλ

+
1

4
(∂Mφ)(ψ̄NΓMΓNχ + χ̄ΓNΓMψN )

+
1

24
e

1

2
φGMNP

(

ψ̄RΓ[RΓMNPΓS]ψ
S + ψ̄RΓMNPΓRχ

−χ̄ΓRΓMNPψR − χ̄ΓMNPχ + λ̄ΓMNPλ
)

− 1

4
√

2
e

1

4
φF̂MN

(

ψ̄QΓMNΓQλ + λ̄ΓQΓMNψQ + χ̄ΓMNλ − λ̄ΓMNχ
)

+i
√

2ge−
1

4
φ

(

ψ̄MΓMλ + λ̄ΓMψM − χ̄λ + λ̄χ
)

−e4

e6
Tiδ

(2)(y − yi), (3.13)

where the modified gauge field strength is

F̂MN = FMN − δm
Mδn

N ǫmnξi
δ(2)(y − yi)

e2
, (3.14)

with

ξi =
Ti

4g
. (3.15)

Here GMNP is the same as eq. (2.3). The SUSY transformation of λ is modified as

δλ =
1

4
√

2
e

1

4
φF̂MNΓMNε − i

√
2g e−

1

4
φε, (3.16)

but the SUSY transformations for the other fields are the same as eqs. (2.8)–(2.13). The

important ingredient of the above modifications is that we have a brane term linear in FMN,

the brane-localised FI term. In other words, there is a brane coupling to the magnetic flux,

which is proportional to the brane tension. We note that the modified gauge field strength

satisfies the Bianchi identity ∂[QF̂MN ] = 0 even with the singular FI term.

One could be worried by the squared terms of the two-dimensional delta functions ap-

pearing in the kinetic term F̂MNF̂MN. However, SUSY requires these terms to be present

and are a usual ingredient of orbifold supersymmetric theories [35, 34]. The delta squared

terms, i.e., δ2(0), appear naturally in orbifolds, when bulk and brane fields are coupled

supersymmetrically. One can obtain the same form F̂MNF̂MN in a 6D off-shell super-

symmetric U(1) theory on T 2/Z2, after the auxiliary field of the bulk vector multiplet is

eliminated [34]. It has been known that the δ2(0) term provides counterterms, which are

necessary to maintain supersymmetry in explicit calculations on orbifolds, like the scatter-

ing amplitude and the self-energy correction for a brane field [35]. In our case, we have not

introduced brane multiplets other than the tension. The case with brane multiplets will be

studied elsewhere so the usual discussion on the δ2(0) term on orbifolds is expected to hold.

As will be shown in the next section, when one looks for the solutions of the equations

of motion of the above system, the singular term in the modified gauge field strength

– 7 –
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is cancelled by the singular part of the background value of FMN, without affecting the

solution of the metric and the dilaton obtained for the non-SUSY brane action. Only the

linear term in F̂MN with arbitrary coefficient has been considered for the non-SUSY brane

action [11, 17]. However, in this case, even if FMN acquires a singular piece to satisfy the

gauge field equation, it would lead to a problematic two-dimensional delta squared term

in the Einstein and dilaton equations of motion [17]. Moreover, when one looks at the

low energy effective theory, there is a worrisome singular delta squared term corresponding

to the mass term of 4D U(1)R gauge boson Aµ from GµmnGµmn. However, by solving

the linearized equation for BMN and inserting the solution for Bµm into the action, the

singular piece of the Bµm cancels the contribution of the FI term in Gµmn, ending up with

the regular action where the gauge boson gets a finite mass from the FI terms. Similar

cancellations happen in 5D [36] and 6D [6] supergravities coupled to branes.

There are some known anomaly-free models including the non-abelian gauge fields in

6D gauged supergravity [37, 38]. In these cases, an abelian flux can be also turned on in the

direction of the non-abelian gauge fields. For instance, in the model with E7 ×E6 ×U(1)R
with hyperino (912,0)0, the U(1) contained in E6 can also develop a nonzero flux, still

maintaining the warped solution that was obtained for the Salam-Sezgin supergravity [23].

As a result, E6 is broken down to SO(10) in the bulk and the adjoint fermions of E6 can sur-

vive as two chiral 16’s of SO(10) [37]. Even in this more general case, the supersymmetric

brane action obtained for the Salam-Sezgin supergravity remains the same.

Furthermore, we can always introduce arbitrary localized FI terms for any abelian

factor7 of the bulk gauge group other than U(1)R in a supersymmetric way because there

is no constraint from the variation of the gravitino kinetic term unlike eq. (3.6). We only

have to modify the gauge field strength appearing in both the bulk action and the SUSY

transformation of the corresponding gaugino like in eqs. (3.14) and (3.16), except the term

included in GMNP. Thus, it is straightforward to see that the localised FI terms generated

in 6D global SUSY case [34] are embedded into a supergravity theory.

4. Modification of the background solution due to the SUSY-brane action

In the present section, we will study the effect of the brane-localized FI terms to the

warped axisymmetric solution that was obtained for non-SUSY brane action. We will see

that the geometry is not modified by the latter addition, but the gauge field solution and

the quantization condition change.

4.1 The modified equations of motion

We will study vacua where the Kalb-Ramond field is consistently (i.e., satisfying its equa-

tion of motion) set to zero. Then, the Einstein equations derived from the modified ac-

7This does not include U(1) directions of non-abelian groups, as the one in E6 mentioned above.

– 8 –
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tion (3.13) are

RMN = 2g2 e−
1

2
φgMN +

1

2
e

1

2
φ

(

F̂MPF̂N
P − 1

8
gMNF̂ 2

PQ

)

+
1

4
∂Mφ∂Nφ + T i

MN , (4.1)

where T i
MN = −1

2

√
g4√
g6

Ti

(

g4
µνδµ

M δν
N − gMN

)

δ(2)(y − yi) is the brane tension contribution

(with g4
µν the 4D induced metric). Furthermore, the dilaton and the gauge field equations

read

¤
(6)φ =

1

4
e

1

2
φF̂ 2

PQ − 8g2 e−
1

2
φ , (4.2)

∂M

(√−ge
1

2
φF̂MN

)

= 0 . (4.3)

4.2 The modified warped solution

Assuming axial symmetry in the internal space, the form of the general warped solution

of [10 – 12] is maintained, except that the solution for Fmn is being replaced with the hatted

one. Thus, the metric, the gauge field and the dilaton solutions are respectively

ds2 = W 2(r)ηµνdxµdxν + R2(r)

(

dr2 + λ2Θ2(r)dθ2

)

, (4.4)

F̂rθ = λq
ΘR2

W 6
, (4.5)

φ = 4 ln W, (4.6)

with

R =
W

f0
, Θ =

r

W 4
, (4.7)

W 4 =
f1

f0
, f0 = 1 +

r2

r2
0

, f1 = 1 +
r2

r2
1

, (4.8)

where q is a constant denoting the magnetic flux, and the two radii r0, r1 are given by

r2
0 =

1

2g2
, r2

1 =
8

q2
. (4.9)

In the warped solution, the metric has two conical singularities, one at r = 0 and the

other at r = ∞, which is at finite proper distance from the former one. The deficit angles

δi of these singularities (supported by brane tensions Ti = 2δi) are given by

δ0

2π
= 1 − λ, (4.10)

δ∞
2π

= 1 − λ
r2
1

r2
0

. (4.11)

In the unwarped limit, i.e., for r0 = r1, the two brane tensions must be equal.
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Writing the delta function in eq. (3.14) in polar coordinates around r = 0 as δ(2)(y −
yi)/e2 = δ(r)/(2λπr) and ǫrθ = λr, eq. (4.5) becomes

Frθ −
ξ0

2π
δ(r) = λq

ΘR2

W 6
. (4.12)

Then, applying Stokes theorem around the patch including r = 0, one obtains that Aθ(0) =

ξ0/(2π) and thus the solution of the only non-zero component of the gauge field is

Aθ = −4λ

q

(

1

f1
− 1

)

+
ξ0

2π
. (4.13)

Likewise, the gauge potential in the patch surrounding r = ∞ is

Aθ = −4λ

q

1

f1
+

ξ∞
2π

. (4.14)

Hence, after connecting the gauge field solutions in two patches by a gauge transformation

and requiring that it is single valued under 2π rotations, we find the following quantization

condition should hold
4λg

q
= n +

g

2π
(ξ∞ − ξ0), n ∈ Z. (4.15)

In other words, we find that the FI terms fix the Wilson line phases of the gauge potential

to be non-vanishing on the branes and can contribute to the quantization condition for

ξ0 6= ξ∞, i.e., when T0 6= T∞. Since the covariant derivative has the same form as in the

case with no branes, the modified background solution for the gauge potential changes the

equations of motions of the other bulk fields and can affect the number of their zero modes.

Using the flux quantization (4.15) with eqs. (4.10) and (4.11), we obtain the brane tensions

are related as
(

1 − T0

4π

)(

1 − T∞
4π

)

=
[

n +
g

2π
(ξ∞ − ξ0)

]2
. (4.16)

5. Supersymmetry of the background solution

Calculating the fermionic SUSY variations (2.11), (2.12), (2.14) for the above background

solution, we can find in which cases the background respects or breaks SUSY. In the general

warped background, SUSY is completely broken in the bulk. This can be seen just from

the SUSY transformation of the dilatino,

δχ = −W ′

W

[

cos θσ1 ⊗ γ5 + sin θσ2 ⊗ 1
]

ε, (5.1)

which is always non-zero. In the special case of zero warping, i.e., when W ′ = 0, we need

to study the remaining SUSY transformations.

When there is no brane present, the solution (4.4) becomes a sphere compactifica-

tion, known as the Salam-Sezgin vacuum [9]. The nontrivial SUSY transformations of the

fermions are

δλ = i
√

2g(γ5 − 1)ε, (5.2)

δψθ =

[

∂θ + i
(

1 − 1

f0

)

(γ5 − 1)

]

ε. (5.3)
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In this case, there exists a constant Killing spinor ε̃L, which means that N = 1 SUSY is

preserved.

For the ”football”-shaped extra dimensions [15], there are two branes of equal tension,

T0 = T∞, located at the poles of the sphere. The warp factor is constant, so we have that

q = 4g and λ = n. Since n > 1, the space has angle excess and thus the brane tensions

are negative8 (see [21] for a discussion on negative tension branes). In this case, the FI

terms make the gauge potential nonzero at the branes, but they do not contribute to the

quantization condition in eq. (4.15). In the patch surrounding the brane at r = 0, the

nontrivial fermionic SUSY transformations are

δλ = i
√

2g(γ5 − 1)ε, (5.4)

δψθ =

[

∂θ +
i

2

{

1 + n

(

1 − 2

f0

)}

γ5 + in

(

1

f0
− 1

)

− i
gξ0

2π

]

ε

=

[

∂θ +
i

2

{

1 + n

(

1 − 2

f0

)}

(γ5 − 1)

]

ε, (5.5)

where use is made of gξ0 = 1
4T0 = π(1 − n) from eq. (4.10) in the last line. Then, for a

non-zero left-handed variation parameter ε̃L, for which the gaugino variation is manifestly

zero, the remaining nonzero gravitino variation is

δψ̃θL = ∂θ ε̃L. (5.6)

So, there exists a constant Killing spinor ε̃L which is Z2-even with respect to the r = 0

brane. Thus, we find that the modified spin connection are cancelled by the nonzero Wilson

line phases at the brane positions, so that N = 1 SUSY is preserved for the football solution.

This is to be compared with the case of non-SUSY brane action in [23], where only the

case of odd monopole number n would allow for N = 1 SUSY on the brane.

6. The gravitino zero modes

As we have seen in section 4 and in particular in eqs. (4.13) and (4.14), there are in general

two possible inequivalent Wilson line phases at the conical singularities due to the localized

FI terms. In this section, we discuss the effect of these Wilson line phases to the existence of

massless modes of the gravitino. We will also note the differences from the result obtained

in the case for a non-SUSY brane action [23].

For comparison with our earlier work [23], let us move to a Gaussian normal coordinate

system, where the warped solution is written as

ds2 = W 2ηµνdxµdxν + dρ2 + a2dθ2, (6.1)

with dρ = Rdr, a = λRΘ.

8In view of that, we should have rather called the space ”pumpkin”-shaped, however, we keep the term

”football” for simplicity.
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After decomposing the 4D vector part9 of the 6D Weyl gravitino ψµ = (ψ̃µ, 0)T as

ψ̃µ = (ψ̃µL, ψ̃µR)T in terms of the 4D Weyl spinors, we make a Fourier expansion of them

as

ψ̃µL =
∑

m

ψ̃
(m)
µL (x)ϕ

(m)
L (ρ)eimθ, (6.2)

ψ̃µR =
∑

m

ψ̃
(m)
µR (x)ϕ

(m)
R (ρ)eimθ. (6.3)

By the redefinition of the 4D gravitino, there is no mixing of ψ̃µ with the other fermionic

modes [23]. To obtain the massless modes, we set σ̄α∂αψ̃
(m)
µL = σβ∂βψ̃

(m)
µR = 0. Then, the

equations of left-handed and right-handed gravitinos are decoupled [23] and read
[

∂ρ +
W ′

W
+

1

a

(

m − 1

2
ω − gAθ

)]

ϕ
(m)
R = 0, (6.4)

[

∂ρ +
W ′

W
+

1

a

(

−m − 1

2
ω + gAθ

)]

ϕ
(m)
L = 0, (6.5)

with ω = 1 − a′. In the patch surrounding r = 0, we can find the explicit solution to the

above equations as

ϕ
(m)
L =

1

W
exp

[
∫ ρ

dρ′
1

a

(

m +
1

2
ω − gAθ

)]

=
Nm

W
√

a

(

r

r0

)
s
2

f
1−t
2

0 , (6.6)

with

s =
1

λ
(1 + 2m) − gξ0

πλ
,

t =
1

λ

(

m +
1

2
− n − gξ∞

2π

)(

1 − r2
0

r2
1

)

+
1

λ

[

n +
g

2π
(ξ∞ − ξ0)

]

+ 1, (6.7)

where Nm is the normalization constant. We note that the solution for the right-handed

gravitino is given by the one for the left-handed gravitino (6.6) with (m,n, ξ0, ξ∞) being

replaced by (−m,−n,−ξ0,−ξ∞).

From the normalisation condition
∫

dθ

∫

dρ Wa |ϕ(m)
L,R|2 < ∞, (6.8)

we determine the normalisation constant of the general solution (6.6) as

N2
m =

1

2πr0

(
∫ ∞

0
dx

xs

(1 + x2)t

)−1

≡ Γm

2πr0
, (6.9)

with

Γm ≡ 2Γ[t]

Γ[(1 + s)/2]Γ[t − (1 + s)/2]
. (6.10)

9We will not be interested in the extra dimensional vector components of the gravitino ψm which are

spin- 1

2
components.
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Then, in order for a left-handed zero mode to exist, the following normalisability conditions

should be respected,

s > −1, s − 2t < −1. (6.11)

In terms of our original parameters, we require that

−1

2
(1 + λ) +

gξ0

2π
< m < n − 1

2

(

1 − λ
r2
1

r2
0

)

+
gξ∞
2π

. (6.12)

For the right-handed zero mode, the corresponding normalisability condition reads

n +
1

2

(

1 − λ
r2
1

r2
0

)

+
gξ∞
2π

< m <
1

2
(1 + λ) +

gξ0

2π
. (6.13)

Using the relation between the FI term and the brane tension (3.15), as well as eqs. (4.10)

and (4.11), the normalisability condition becomes for the left-handed mode

−λ < m < n , (6.14)

and for the right-handed mode

n + 1 − λ
r2
1

r2
0

< m < 1. (6.15)

If we compare the above calculation to the one of the non-SUSY brane tensions [23], we

see that in the SUSY brane case, due to the localized FI terms, there are corrections to

the gravitino wavefunction (6.6) and consequently to the normalisability conditions (6.12)

and (6.13). Moreover, it is also expected that there are modifications to the KK massive

modes of the gravitino [23].

For the ”football”-shaped solutions, we have that q = 4g and λ = n. For n = 1, we

obtain the well-known Salam-Sezgin vacuum with one 4D chiral gravitino, the left-handed

zero mode ϕ
(0)
L . For n > 1, we see that we will always have normalisable left-handed zero

modes ϕ
(m)
L , but no right-handed ones. The action of the Z2 parity on the left-handed

modes requires that m is even. Therefore, for n even, (n − 1) left-handed zero modes are

allowed, and for n odd, n left-handed zero modes survive. In all latter cases, N = 1 SUSY

is preserved by the background.

It would be surprising to find that for n > 2, the N = 1 unwarped solutions support

more than one 4D chiral gravitinos, because one would expect only one surviving in N = 1

4D effective supergravity. The mass terms for these chiral gravitinos would be forbidden

due to the U(1) gauge symmetries: one is the U(1)Q isometry of the axisymmetric extra

dimensions and the other is the U(1)R gauge symmetry.10 The charge operator Q̂ of the

10Both of them can be anomaly-free due to the generalised Green-Schwarz mechanism where the U(1)

gauge bosons get masses but the theory is still invariant due to the axionic coupling to the gauge boson. The

gauge boson mass of the U(1)Q could be read from a possible gravitational Chern-Simons term in the three

form field strength, which arises due to the supersymmetric completion of the Green-Schwarz term [39], as

in the case of the U(1)R gauge boson. The computation of it, is beyond the scope of the present paper.
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U(1)Q commutes with the 6D Dirac mass operator [40] and it is given in the 6D spinor

basis by

Q̂ = −i∂θ +
1

2
σ3 ⊗ γ5. (6.16)

Let us now consider the 4D effective action for the left-handed zero modes of the

gravitino coupled to two U(1) gauge bosons. The part of the effective low energy Lagrangian

that is relevant in our discussion, is similar with the non-SUSY bulk model [41], and reads

Leff = −1

4
F 2

µν − 1

4
F

′2
µν

+
∑

m

ψ̃
(m)†
µL σ̄[µσν σ̄λ]

(

∂ν +
1

4
ωναβσ[ασ̄β] − ig4RAν − ig′4QA′

ν

)

ψ̃
(m)
λL (6.17)

where Aµ, A′
µ are the U(1)R and U(1)Q gauge bosons with the 4D effective gauge couplings

g4 and g′4, respectively. Here, we note that the R and Q charge operators take the values

+1 and m + 1
2 for ψ̃

(m)
µL , respectively. Then, after changing the basis of the gauge bosons

to A1µ and A2µ as

A1µ =
1

√

4g2
4 + g′24

(

g′4Aµ − 2g4A
′
µ

)

, (6.18)

A2µ =
1

√

4g2
4 + g′24

(

2g4Aµ + g′4A
′
µ

)

, (6.19)

the above action is rewritten as

Leff = −1

4
F 2

1µν − 1

4
F 2

2µν

+
∑

m

ψ̃
(m)†
µL σ̄[µσν σ̄λ]

(

∂ν +
1

4
ωναβσ[ασ̄β] − ig1Q1A1ν − ig2Q2A2ν

)

ψ̃
(m)
λL ,(6.20)

where the new charge operators are

Q1 = R − 2Q, Q2 =
2g2

4

g′24
R + Q, (6.21)

and the new gauge couplings are

g1 =
g4g

′
4

√

4g2
4 + g′24

, g2 =
g′24

√

4g2
4 + g′24

. (6.22)

In this case, we note that the Q1 charge of the left-handed zero mode with m winding

number is Q1 = −2m.

Let us now suppose that at low energies, only Q1 survives while Q2 is broken.11 Then,

for the ”football” solutions, after the Z2 projection, the remaining left-handed zero modes

with nonzero even and opposite m or Q1 charges can be paired up to make a 4D Dirac spinor

Ψ(m)
µ =

(

ψ̃
(m)
µL ,−iσ2ψ̃

(−m)∗
µL

)T

, (6.23)

11If a linear combination Q2 is anomalous, it could be broken due to the corresponding FI terms without

breaking SUSY.
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so that they get coupled by their Dirac masses. Therefore, there can be only one chiral

massless mode of the gravitino with m = 0, i.e., the zero mode uncharged under the

U(1)1. The above mechanism for pairing the left-handed modes, relies on the VEV of

a complex scalar field that breaks the U(1)2, with appropriate quantum numbers which

makes a Yukawa coupling with the left-handed modes Q2-invariant. If in addition we

write down localised Majorana mass terms on regularised branes [23] for the chiral m = 0

massless mode, we can end up with a non-zero mass 4D Majorana gravitino. In this case,

the remaining N = 1 SUSY should be also broken by nonzero F-terms on the branes.

For the general warped solution, we find that there are multiple zero modes of left-

handed gravitino with even m while there could also exist zero modes of right-handed

gravitino with odd m. In this case, the number of zero modes depends on the warping and

the monopole number.

In the presence of the localised FI terms, for a spin-1
2 fermion with the same U(1)R

charge as the gravitino, a similar analysis can be done like in ref. [21]. There is a difference

from the gravitino case only by the warp factor dependence of the wavefunction. The

wavefunction of the zero mode is given by eq. (6.6) with W being replaced by W 2.

However, for the spin-1
2 fermion, the weighting function in the norm integration (6.8) is

changed to W 3a, so the normalization condition is the same as eqs. (6.14) and (6.15) in

the gravitino case. Therefore, a spin-1
2 fermion has the same spectrum as the one of the

gravitino. Thus, a pair of the spin-1
2 zero modes with (m,−m) could be regarded as being

eaten by a pair of the zero modes of the gravitino with (m,−m) to make up a massive

4D Dirac gravitino. Consequently, each massive 4D Dirac gravitino should be part of an

N = 1 massive spin-3
2 supermultiplet.

7. Conclusions

In this work, we examined the way to supersymmetrise the Salam-Sezgin model in the

presence of codimension-2 branes carrying only tension. We have modified the brane action

by adding brane localised FI terms and in addition changed the SUSY transformations

where necessary. The resulting brane action respects N = 1 SUSY, if the FI terms are

chosen appropriately (related to the brane tension) and requires the presence of a Z2

symmetry to be realised.

The axisymmetric background solution for the above system is the same for the metric

and dilaton fields as for the non-SUSY brane action system [10 – 12]. However, the gauge

field solution acquires an additional Wilson line contribution. The last is important when

discussing the SUSY of the background solution. There, we find that the unwarped solution

with ”football”-shaped internal space always respects N = 1 SUSY, in contrast with the

non-SUSY brane action system.

The gravitino zero mode equation of motion was then analysed for the above-mentioned

background. We found the conditions for which left- and right-handed modes are normal-

isable. We have focused on the unwarped ”football” background case and remarked that

always a left-handed mode survives with zero winding number m. For n > 3 there are

additional chiral zero modes with non-zero m. It is conceivable that these extra modes, is
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some cases, can be paired to Dirac four-dimensional spinors, leaving only one chiral zero

mode in the massless spectrum.

A natural continuation of the present study is to include N = 1 matter multiplets

(chiral and vector) on the branes with couplings to the bulk fields. This would require a

regularisation of the brane, e.g., in the lines of [27], since the brane source terms coupled

to the bulk fields other than the brane tension would lead to classical divergences. Then, it

is expected that SUSY will completely fix the couplings of the brane with the bulk fields.

In this way, we can reconsider the issue of moduli stabilisation [39, 42, 30] in the specific

gauged supergravity with the supersymmetric branes. Moreover, if the MSSM fields are

localised on one of the branes, one is expected to draw important conclusions about the

supersymmetry breaking transmission between the bulk and the branes, or between the

two distant branes in the different geometry than a torus. A generalization of the above

study to multibrane systems without the axial symmetry [13] could also be interesting in

that respect.

In addition, a necessary work that is important to be done is the consistency check of

our proposal to eliminate the chiral modes of the gravitino with non-zero winding number

m. One should study whether it is possible in the specific model to have one of the two

U(1)’s naturally much heavier than the other, thus leaving one gravitino with a small mass

in the low energy spectum. Moreover, the decoupling of the chiral modes with non-zero m

relies on the nonzero VEV of a scalar field which has a right quantum number Q2 for the

Yukawa coupling. We plan to investigate the above questions in the near future.
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A. Notations and conventions

We use the metric signature (−,+,+,+,+,+) for the 6D metric. The index conventions are

the following: (1) for the Einstein indices we use M,N, . . . = 0, . . . , 5, 6 for the 6D indices,

µ, ν, . . . ,= 0, . . . , 3 for the 4D indices and m,n, . . . = 5, 6 for the internal 2D indices, (2)

for the Lorentz indices we use A,B, . . . = 0, . . . , 5, 6 for the 6D indices, α, β, . . . = 0, . . . , 3

for the 4D indices and a, b, . . . = 5, 6 for the internal 2D indices.

We take the gamma matrices in the locally flat coordinates [9], satisfying {ΓA,ΓB} =

2ηAB, to be

Γα = σ1 ⊗ γα, Γ5 = σ1 ⊗ γ5, Γ6 = σ2 ⊗ 1, (A.1)
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where γ’s are the 4D gamma matrices with γ2
5 = 1 and σ’s are the Pauli matrices with

[σi, σj ] = 2iǫijkσ
k, with i, j, k = 1, 2, 3,

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. (A.2)

The curved gamma matrices on the other hand are given in terms of the ones in the locally

flat coordinates as ΓM = e M
A ΓA where e M

A is the 6D vielbein. In addition, the 6D chirality

operator is given by

Γ7 = Γ0Γ1 · · ·Γ6 = σ3 ⊗ 1. (A.3)

The convention for 4D gamma matrices is that

γα =

(

0 σα

σ̄α 0

)

, γ5 =

(

1 0

0 −1

)

, (A.4)

with σα = (1, σi) and σ̄α = (−1, σi). The chirality projection operators are defined as

PL = (1 + γ5)/2 and PR = (1 − γ5)/2.

Finally, some useful quantities which we use in the text are the following

Γα5 = 1 ⊗ γαγ5, Γα6 = iσ3 ⊗ γα, Γ56 = iσ3 ⊗ γ5. (A.5)
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